
JChassis User Guide
Sam Stainsby

Copyright © 2003-2004 Sam Stainsby

All rights reserved. Verbatim copying and distribution of this entire document is per-
mitted in any medium, provided this notice is preserved.

Revision History
Revision version 0.1 22nd May, 2003
Revision version 0.2 20th March, 2004

Table of Contents
Introduction ... 1
Prerequisites .. 2

A note on scripts ... 2
The Basics ... 2

What's a component? ... 2
What's a context? .. 2
The "Hello World" Example ... 3
Configuring Services ... 4
In Summary ... 4

Creating JChassis applications ... 5
The essentials ... 5
Configuring a service context .. 5
Configuring service instances .. 6
Configuring service factories ... 7
Configuring service properties ... 7
Configuring metadata ... 8
Configuring instances using factories .. 9
Configuring instances using other instances .. 9
The "Archiver" example ... 10
Putting it all together ... 12
The "Item List" example ... 12
More complex applications ... 13

Creating JChassis Components .. 13
Defining a service ... 13
JChassis Modules .. 14
The Module XML format ... 16
Module naming conventions .. 18
Metadata naming conventions ... 18
Module Archives .. 18
Creating your own service context .. 19

The SDK Tools ... 19
The jcmar tool ... 19
The jcdep tool .. 20

The core framework .. 20
A. What about the JavaBean APIs? ... 20

Introduction

1

JChassis is a component system for developing and maintaining Java applications. JChassis is alos a col-
lection of useful components that can be used in Java applications. This document explains how to de-
velop Java applications using JChassis and how to create your own JChassis components. If you are un-
familiar with the basic aims of JChassis, or just want a quick overview ("executive summary"), you
should consult the document JChassis Factsheet first.

Prerequisites
You must know how to write simple Java programs to understand this guide. Some familiarity with
XML is also needed. It will be an advantage if you can understand XML DTDs as well. You should
probably read JChassis Factsheet first for a quick overview of what JChassis is about.

A note on scripts
The examples in this document that run scripts in the JChassis SDK are shown for the Linux operating
system. You will find that there are similarly named batch files that you can use under Windows NT or
XP.

The Basics
This section covers the basic concepts of the JChassis system, including how to compile and run the
"Hello World" example application.

What's a component?
The term component in the software world can mean many different things to different people. Classes,
packages, applications, JavaBeans, J2EE Entity Beans, whole APIs, etc. can all be thought of as com-
ponents in some respect. The most useful components are those that have simple, cleanly defined inter-
faces with a "natural" interpretation in the domain they are used in.

Components are more useful too if they can deployed easily. Ideally, they are independent of other com-
ponents, which means that moving one doesn't require taking a whole bunch of other components with
it. In reality, components depend on other components — this is a good thing because components that
don't depend on other ones are usually pretty boring. A good component though will have relatively few
dependencies on other components.

A good collection of components will be "loosely coupled": the dependencies will be few and will usu-
ally be dependencies on abstract interfaces rather than internal implementations of other components.
This second property — dependency on abstract interfaces — allows many alternative components to be
slotted in where a particular interface is required by another component, as long as each of those altern-
ative components supports the required interface. That approach gives rise to flexible, reusable systems
of components: which is exactly what JChassis tries to achieve.

What's a context?
If you are already familiar with the JavaBeans BeanContext API, then you probably don't need to read
this section, since you'll have a basic understanding of what contexts are used for. One thing to note be-
fore you skip on to the next bit is that JChassis uses its own context API and does not use Sun's more
complex BeanContext API. The reason: JChassis' context API is much simpler and places fewer con-
straints on what can be a component. The JavaBeans Context API is also not supported on all of the plat-
forms that JChassis can be deployed on. See "What about the JavaBean APIs?" in the appendices for
more details.

A context, or more accurately, a service context, is a software entity that provides a number of services

JChassis User Guide

2

to the components contained within it. A services is small, simple, highly intuitive interface. This is ex-
actly what a good component should provided in the interfaces that it presents.

In JChassis, components provide services, through interfaces, that other components can choose to use.
Sometime, components require the presence of certain services before that can operate. So components
are put into contexts, and contexts in turn provide a convenient point for other components to find the
services of that component. Those other components known little about the component that implements
the service though.

Maybe an example will help. We'll consider components formed from just one Java class for simplicity.
Let's suppose Log is a simple Java interface with one method log(String message). We could make two
components that implement this interface. Lets call the first one LogA and the other LogB. Perhaps one
of these components logs to a file, where the other one logs to the console. Another component, My-
Component, wants to use a Log service for logging what is does. We place LogA in the same context
as MyComponent. When MyComponent asks its context for a Log service, it gets back an instance of
LogA. If we had placed LogB into the context instead of LogA, then MyComponent would get an in-
stance of LogB. Note that MyComponent doesn't depend on which type of service it gets, LogA or Lo-
gB — it just knows that it gets a Log service of some kind. This allows anyone to write their own Log
service and slot it in, without having to change MyComponent.

You might say to the above example "well isn't this just what the Java interface mechanism is used for
anyway?". Well, yes ... and no. Yes, we are taking advantage of the usefulness of Java interfaces to
provide flexibility and extensibility. In addition though, contexts are useful because they limit the scope
of where an implementation is available, and aggregate the services provided by components into a con-
venient form, accessed through the context's API, as we shall see.

The "Hello World" Example
Let's look at an example straight away to clarify what was discussed so far.

In your SDK's examples directory, you can build and run all of the examples. List the contents of that
directory and you will see a subdirectory for each example program that comes with the SDK.

To build an example, change to the examples subdirectory. Before attempting to build anything, you
must edit build_env to suit your environment. Make sure you backup the original copy of build_env be-
fore you do this. The important variables are JAVA_HOME and ANT_HOME. You must have Java
and Apache Ant installed somewhere. Java version 1.1 or above will be sufficient for this example.

Once build_env has been edited to your satisfaction, give the command:

> ./build -Dexample=hello_world_basic run

Note that the example property tells the build system which example to build. You should see "Hello
World" appear in the output. Most errors occur at this point due to incorrect JAVA_HOME and
ANT_HOME settings in the build_env file. Please check those values first.

So what have we done so far? Looking at the Main.java code in the src subdirectory of the
hello_world_basic example, "not much" would appear to be the answer. The Main class extends
something called Application: a class that is a convenient starting point for JChassis applications. We'll
talk more about that later. Though it might not look like it, the Main instance is actually a trivial
JChassis service in our example application. It uses the Log instance by getting it from the service con-
text, using the getService method (in fact, Application has its own convenient getService method that
avoids getting the service context each time, but using that would be less instructive). The Log instance
that it retrieves is an instance of another service. So where is the context that these components live in
configured? The answer to this question is found in the services.xml file in the hello_world_basic dir-
ectory ...

JChassis User Guide

3

Have a look at the services.xml file. You'll see that there's a context element there that contains two in-
stances: the Main instance that runs the show, and a Log instance that is used for output. The syntax and
semantics of this XML format is described in the services.dtd file in the doc/dtd/0.1 subdirectory of the
JChassis SDK distribution — don't bother looking at that yet though unless you are particularly curious.
Just understand that the services.xml file configures a single context that contains a Main service and
another service that is responsible for logging. The implementation Main is declared to implement the
Application interface. The main method in the Application superclass takes care of calling the run
method on Main. The Log interface is implemented by Log (in the org.jchassis.log.impl package this
time) — the default logging service that by default outputs to stdout (it can also be configured to output
to a named file or to stderr if required — see "Configuring services" later).

Since Main only uses one other component, this example is a bit boring. That's not to say that there
aren't other components at work here. Have a look in the directory libs created under /
tmp/jchassis/$USER/examples/hello_world_basic/ (where $USER is your username) by the build sys-
tem. You'll see a bunch of files suffixed by ".mar". These are MAR files, which are just the usual JAR
files with some extra information added into the metadata. Each MAR file represents a JChassis com-
ponent, though many do not export services and are simply convenient vehicles for transporting code.
These components are as used by the JChassis "basic" framework. For example, some of them are used
for processing XML under Java 1.1. There seems to be a lot of files there: when using the alternative
"core" framework, there are quite few less components required to run a "Hello World" program, al-
though this comes at a cost in terms of developer convenience. We'll talk more about the alternative
JChassis core framework and MAR files later on.

Note that we could take out that default Log implementation and replace it with a different Log imple-
mentation (say one that appends log entries onto a database table, maybe called DbLog, that implements
the Log interface) and Main would be none the wiser. More importantly, we could do this by simply
changing the XML configuration and replacing the appropriate MAR file, without the need to modify or
recompile the application code. This is one of the key advantages of the JChassis approach.

Configuring Services
We have mentioned before that services can be configured. In this section we show you how to not only
place services in a context, but to configure those services as well.

Make a backup copy of your services.xml file in the hello_world_basic directory. Now modify ser-
vices.xml thus: add the following XML into the Log instance element, directly under the end tag for the
Log implementation element.

<property>
<name>logFileName</name>
<value>mylog</value>

</property>

What this snippet does is set a property on the Log instance so that when it is created, the property log-
FileName is set to mylog. Run the example and you will see that no output occurs to the console. In-
stead you will find a file called mylog in your directory that contains the text "Hello World".

If this worked, "Congratulations!" (if not, you could check the validity of your XML against the DTD to
see where you went wrong). You have just modified the application behaviour through configuration,
again avoiding the need to modify or recompile source code.

In Summary
We hope you now have a bit of an idea of what components and contexts and their configuration are all
about. If not, the example code in the following sections might help you gain a clearer understanding.

JChassis User Guide

4

Creating JChassis applications
In this section, we describe how to write your own JChassis applications using the JChassis "basic"
framework. Writing a non-trivial JChassis application invariably requires not only using some JChassis
components but writing some of your own as well. If not, then you are probably missing the point: com-
ponent-based programming is a more flexible and extensible way of developing your applications. Writ-
ing your own JChassis components is covered in the "Creating JChassis Components" section.

This section assumes that you know how to write simple Java applications. If not, consult the document-
ation that came with your Java Development Kit or on the Sun Microsystems Java Web Site
[http://java.sun.com/].

The essentials
What are the essential elements needed by a JChassis application? JChassis applications can use either
of two frameworks: the core framework or the basic framework. The core framework is for applications
that need to operate in very constrained environments and require a minimal code size (the core frame-
work add an overhead about 15KB) and is not covered until later (see "The core framework"). The basic
framework is not quite as compact (it's overhead is about 60KB), but you will find it much more com-
pact than other frameworks such as NetBeans Platform [http://www.netbeans.org/products/platform/] for
example, which can add megabytes to your code size. The basic framework actually uses the core frame-
work to bootstrap the core services that it requires.

To use the basic framework, you will need a certain set of modules (in the form of MAR files) in the
classpath of your application. Looking at the depends.properties file in hello_world_basic example ap-
plication directory, you will see what MAR files it requires. The depends.properties file is used by the
build system for the examples, and is not needed for general JChassis applications. These are necessary
for all basic framework applications, except for the MAR files whose names are prefixed by jc_log_ —
these are only needed if you intend to use a JChassis logging service. See the JChassis Module Guide
for more information on what each module does. The MAR files for these and other modules in the SDK
are found in the modules directory of the JChassis SDK.

For the basic framework, you will also require a services.properties file and a services.xml file. We
mentioned that the basic framework uses the core framework: this is where the services.properties file
comes in. The services.properties file contain the service configuration for the core framework, in
much the same way the services.xml file contains the service configuration for the basic framework.
The difference is that the core framework configuration is much more limited. For example, you cannot
set properties on a service in the services.properties file. For our purposes, simply using a copy of the
"Hello World" services.properties file is sufficient — you don't need to know what it does at this point.
While you're at it, you'll need a services.xml file which you may as well copy from there as well and
then modify to your desired configuration. Both configuration files should be in the classpath of your
application.

The name and location of the services.xml file can be changed by setting the system property
org.jchassis.basic.config, which is the resource name (as in a class's getResource method) of the XML
file.

You now have the essentials to build a JChassis application. We recommend using Apache Ant
[http://ant.apache.org/] for your build system. You can look at some code from the build.xml file in the
examples directory to get some ideas, such as the copylibs target that can be used to automatically copy
the MAR files you need into your build area.

Configuring a service context
We have seen in the section "The Basics" how the services.xml file is used to configure a service con-
text using the context element. In fact, contexts can be nested in the same XML file by nesting context
elements, but that is not a major concern for simple applications. Other entities that can occur within a

JChassis User Guide

5

http://java.sun.com/
http://www.netbeans.org/products/platform/
http://ant.apache.org/

context are instances and factories. We have already seen instance elements in "The Basics". The root
element of a services.xml file is always a services element.

An instance is a singleton service: only one instance of that service every exists within its enclosing con-
text. This instance is created when the context is initialised. Each time the context is asked for that ser-
vice, the same instance of the service implementation class is returned. This is ideal for services such as
a log or printer service that represents a single object. Instances are represented by instance elements in
the services.xml file.

A factory is a source of service instances. Services are only created by factories when they are requested
from a service context. This construction is useful for services that are required on demand. For ex-
ample, suppose we had a ChatRoom service: we would require an new instance for each new chat room
that we created. Factories are represented by factory elements in the services.xml file.

Normally, only context elements are added under the services element. However, it is possible to add
instance elements before the first context element. The instances are added to the root service context:
to top-most service context, which in this case is provided by the JChassis core framework. Certain con-
straints apply to these instances because of the limitations in the core framework — see "The core
framework" later.

Note that the DTD is very specific about the order of the children of a context element. The order is:
metadata, factory, instance, and then nested context elements. So far we haven't mentioned metadata
elements. These are discussed later.

We mentioned above that service contexts can be nested. What effect does this have? In general, it
works like this: if a specified service cannot be found in a certain context, then its parent context is
searched, and so on recursively through the context hierarchy until the service is found. In a sense, de-
fault services in higher-level contexts can be "overridden" by descendant contexts. This means we can
have default services in the top-level context and more specialised services in lower-level (descendant)
contexts, that might be used for different parts of your application. Most likely you will not need nested
contexts for simple applications.

Configuring service instances
A service instance is a single instance of a service implementation class that provides a service to the
users of a context. It is essential to specify a service interface class and a service implementation class as
a minimum. This is done with interface and implementation elements inside each instance element in
the services.xml file. The interface element must come first. The fully qualified class names are entered
as text between the start and end tags.

For example:

<instance>
<interface>MyService</interface>
<implementation>MyServiceImpl</implementation>

</instance>

specifies that the service MyService is implemented by the MyServiceImpl class.

Once an instance is configured, the context can be asked for the service by the name of the interface, and
the context in return will supply the corresponding implementation instance. Following the example
above, an instance of MyServiceImpl will be created when the enclosing context is initialised, and that
instance will be given out to users that request the MyService service.

Service instances are created when the context is initialised, not when the service is requested. To delay
instantiation to request time, you will need to use a service factory (see below).

JChassis User Guide

6

Configuring service factories
A service factory describes how a context will produce instances of a service. As with an instance ele-
ment, a factory element can specify a service interface class and a service implementation class
(although this is not the only way, as we'll see). This is done with interface and implementation ele-
ments inside a factory element in the services.xml file. Once this is done, the context can be asked for a
service by the name of the interface, and the context in return will supply an instance of the correspond-
ing implementation.

For example:

<factory>
<interface>MyService</interface>
<implementation>MyServiceImpl</implementation>

</factory>

specifies that the service MyService is implemented by the MyServiceImpl class.

Once a factory is configured, the context can be asked for a service by the name of the interface, and the
context in return will supply an instance of the corresponding implementation. This may be the same in-
stance each time or a different one as we'll discuss below. The important point is that the first instance is
created at the time the services is first requested, not when the context is initialised.

Service factories are singleton multiplicity by default: they produce only one instance, which is cached
and returned each time the service is requested from the context. Factories can also be on-demand,
which means that a new instance is returned each time the service is requested. The multiplicity attrib-
ute of the factory element controls this behaviour: it can take the values singleton or on-demand. If the
multiplicity attribute is omitted, the default value is, as mentioned above, singleton.

Configuring service properties
Just creating a service instance is pretty boring really. What we need is some way to configure that in-
stance, to provide us with some flexibility. JChassis' services XML format provides a way to do this. It
allows you to configure most JavaBean-style properties on a service implementation.

You might already know what a JavaBean property is. If not, in a nutshell, a JavaBean property is
defined by a naming conventions for the class' "getters" and "setters" (accessors and mutators to be
precise). For example, a Log implementation class might have methods String getLogFileName and
setLogFileName(String name). This means that logFileName is a valid property for that bean, and fur-
thermore has type String. Actually, for our purposes, only the "setter" method needs to be present.
Hopefully you see the method naming pattern here, otherwise see Sun Microsystems' Java web site
[http://java.sun.com/] to find out more about JavaBeans and their properties.

The property element is used to configure the properties of factories and instances. For example, con-
tinuing our instance example above,

<instance>
<interface>MyService</interface>
<implementation>MyServiceImpl</implementation>
<property>

<name>myProperty</name><value>ABC123</value>
</property>

</instance>

would ensure that the setMyProperty method on the instance of MyServiceImpl was called with the
argument "ABC123" immediately after it was created, but before it was handed to the user requesting
the MyService service. The same is kind of configuration is possible for factory elements. In the case of

JChassis User Guide

7

http://java.sun.com/

an on-demand factory, each service will have this property set as it is created. The property element
must come last in an instance or factory element. Note that if the setMyProperty method did not exist,
or it did not take a single argument of type String, then an unchecked exception, ServiceConfigura-
tionError, would be thrown.

Properties of primitive type (e.g. int, byte, etc.) and their "object" equivalents (e.g. Integer, Byte, etc.)
can be set through configuration. The types String and Class are also catered for. The value element has
a type attribute, that defaults to String, as in the case above.

For example, if the setMyProperty method took values of type boolean instead of String, the we might
write:

<property>
<name>myProperty</name><value type="boolean">false</value>

</property>

instead. If the supplied value cannot be parsed, then a ServiceConfigurationError is thrown.

Finally, arrays of the above allowed types are supported through the arrayvalue element where the
value element would normally be used. An arrayvalue element has a child item element for each item
in the array. For example,

<property>
<name>myArrayProperty</name>
<arrayvalue>

<item>10</item>
<item>20</item>
<item>30</item>
<item>40</item>

</arrayvalue>
</property>

defines a property with type Integer[] and the values in that array are specified by the values enclosed in
the item elements in the given order: 10, 20, 30 and 40. The arrayvalue element also has a type attrib-
ute for declaring the type of all of the array elements.

As many property elements can be applied to an entity as desired, provided they correspond to an exist-
ing "setter" methods. Any property elements, if configured, must come last within an instance or fact-
ory element.

Configuring metadata
It's often desirable to have more than one implementation of the same service within a context, or to
have two or more different instances of the same service implementation within a context. How can we
ask a context for a particular instance? The answer lies in service metadata as we will explain ...

Any service instance or service factory can have metadata associated with it (in fact, so can a context,
but no use has been found for this yet). Metadata is information about an entity, that is external to that
entity. The most important metadata in JChassis is "Name" metadata. Name metadata can be used to la-
bel an instance or a factory so that it can be referred to within a JChassis context. Metadata does not af-
fect a service instance or factory, it is merely associated with it.

Metadata is associated with entities in the XML format using the metadata element. The metadata ele-
ment has exactly the same format and usage as the property element, including the types that it sup-
ports. However, any metadata elements, if present, always come first within an entity such as an inter-
face or factory.

Here is an example of naming two service instances:

JChassis User Guide

8

<instance>
<metadata>

<name>Name</name><value>normal-log</value>
</metadata>
<interface>Log</interface>
<implementation>StdoutLog</implementation>

</instance>

<instance>
<metadata>

<name>Name</name><value>error-log</value>
</metadata>
<interface>Log</interface>
<implementation>StderrLog</implementation>

</instance>

where one instance is named "normal-log" and the other "error-log". Both have the interface Log but
different implementations: say, StdoutLog sends log messages to sdtout, and StderrLog to stderr. The
users of the enclosing context might use the two services in different roles.

In general, "Name" metadata is useful for distinguishing between services within the same context with
the same interface but different implementations or properties. The basic context API allows the user to
find services by names as well shall see later.

In the future, metadata other than "Name" may be used, for example to describe other aspects of an im-
plementation. For the moment though, only "Name" with String values is reserved. Please do not use it
for any other purpose or with any other type of value.

Configuring instances using factories
Instead of specifying an interface and implementation class, a service instance can refer to an existing
service factory by specifying its XML ID. For example, if there is a factory element such as:

<factory id="factory1">
<interface>MyService</interface>
<implementation>MyServiceImpl</implementation>

</factory>

you can configure as many instances as you like by referring to the factory's id attribute in this way:

<instance factory="factory1"/>

This means that the factory is used to produce the instance in the normal way, except that the instance is
created when the context is initialised.

Please note that if an instance element refers to a factory as above then it is constrained to have only
metadata elements as children.

Configuring instances using other instances
The JChassis basic framework allows you to alias service instances, so that you can declare an alternat-
ive name for that instance, or even an alternative interface. Aliasing is achieved using an instance ele-
ment once again.

For example, if we have an instance declared as:

JChassis User Guide

9

<instance id="myimpl">
<interface>ServiceA</interface>
<implementation>MyServiceImpl</implementation>

</instance>

we can refer to the same instance (the same object in the Java VM) and declare that it has another inter-
face by the following configuration:

<instance instance="myimpl">
<interface>ServiceB</interface>

</instance>

Note that the aliasing configuration exposes another interface on MyServiceImpl, namely ServiceB. It
refers to the original instance by using the original instance's ID in the instance attribute. No new in-
stance is created here. The second instance element just provides an alternative way to look up the same
object. Alternative "Name" metadata can be defined in the same way. Continuing our example above,
we could append:

<instance instance="myimpl">
<metadata>

<name>Name</name><value>"Jim"</value>
</metadata>

</instance>

<instance instance="myimpl">
<metadata>

<name>Name</name><value>"Bob"</value>
</metadata>

</instance>

which would give the service instance two alternative names: "Jim" and "Bob".

Another example: continuing our logging example from "Configuring metadata" above, suppose we
want all logging to go to the same logging service instance. Then we can do this:

<instance id="thelog">
<metadata>

<name>Name</name><value>normal-log</value>
</metadata>
<interface>Log</interface>
<implementation>StdoutLog</implementation>

</instance>

<instance instance="thelog">
<metadata>

<name>Name</name><value>error-log</value>
</metadata>

</instance>

so that there is only one instance, an instance of StdoutLog. Whether the context's user asks for "normal-
log" or for "error-log" they always get the same instance.

Please note that if an instance element refers to another instance as above then it is constrained to have
only metadata elements and interface elements as children.

The "Archiver" example

JChassis User Guide

10

Before we go much further into the details of writing a JChassis application, lets look at another simple
example that is not quite a trivial as the "Hello World" example. The "Archiver" example is a simple
program to archive a set of files into a JAR file.

Change to the examples directory in the your JChasiss SDK. Run the "Archiver" example program thus:

> ./build -Dexample=archiver run

You should see an error message such as "no archive file specified: use "-f" <filename>". This is be-
cause the example program requires arguments - the name of the JAR file to produce and the files to
place into a JAR file. The build system for the SDK examples has a slightly clumsy way of inserting
command line arguments: you must define the property args to be the command line parameters. Lets
archive the entire print_numbers subdirectory:

> ./build -Dexample=archiver -Dargs="-f tmp.jar print_numbers" run

You should now see that a new jar file is created called tmp.jar. You can check that it contains the con-
tents of the print_numbers subdirectory using your Java SDK's jar tool.

Now lets look at how this application works. Looking at the services.xml file in the archiver directory,
you'll see that the class Main is the application's entry point since it subclasses Application. One other
service is used: the default command line parser. Because Main is a subclass of Application, its run
method is called by the application's main method when the application runs. However, the main meth-
od in Application does something first: if a CommandLineParser service is available, it uses that ser-
vice to parse the command line parameters.

Note that in the services.xml file, the command line parser's rules property is set. That's possible be-
cause the implementation class has a setRules(String[]) method. The String array passed to this method
contains only one element: "-tag:file:-f". This defines a "tag" in the command line syntax called "file"
so that a command line argument "-f" followed by another argument, say "foo", will have a special
meaning. Once the command line is parsed, we can retrieve "foo" by calling getParameter("file") on
the parser. After applying rules such as the " file" tag rule, the remaining command line arguments are
interpreted as positional parameters that can be retrieved by calling getPositionalParameter(int i) on
the parser, where i is the (zero-based) position on the command line. See the JChassis Module Guide for
more information about the default command line parser service jc_cmdline_impl.

You can see in our command line example above how the "file" tag ("-f") is used to retrieve the file
name "tmp.jar" from the command line. The remaining command line arguments become positional
parameters and are interpreted as the names of the files to add to the JAR file. Refer to the source code
in archiver/src/Main.java. The Application class has a shortcut for getting the command line parser
service in the application's context: getCommandLineParser. (it also has a convenient getLog method
too, but we don't use that in this example). The run method uses the parser's getPositionalPara-
meterCount and getPositionalParameter methods to read in the names of the files to archive. The rest
of the run method simply does the archiving using these parameters.

This example is not a particularly useful application, since we already have a jar tool that can do archiv-
ing and more, but hopefully it's useful in showing you how JChassis can be used to place configuration,
such as command line parsing rules, outside of the code. The is preferable to hardwiring configuation in-
to the code.

An important point to note is that the setRules method is part of the implementation class but not the
service interface. That is, the org.jchassis.cmdline.CommandLineParser interface has no setRules
method. Hence, we have factored the implementation-specific configuration out into the XML file. This
is important because if we want to change to a different command line parser implementation, we can do
so by changing the XML configuration and swapping the command line parser implementation's MAR
file for another. Once again, we can do this without having to modify or recompile the application's Java
code.

JChassis User Guide

11

Putting it all together
Here is a check list for creating an application using the JChassis basic framework:

1. Use a good build system. We recommend the excellent Apache Ant build system.

2. Create a subclass of org.jchassis.core.app.Application.

3. Implement your subclass's run method to do whatever you application does. It may use one or
more services provided by components in its enclosing context.

4. You may need to write some of your own components. it's encouraged that you try to make these as
reusable as possible, both for you own sake, or the sake of your organisation, and also so you could
contribute them back to the JChassis project or the open source community in general. Writing your
own components is covered in the next section.

5. Make sure all of the relevant MAR files are in the classpath. You will at least need
jc_attribute.mar, jc_core.mar, jc_coreapp.mar, jc_coreloader.mar, jc_basic.mar,
jc_basicloader_kdom2.mar, jc_resloc_if.mar, jc_resloc_impl.mar, kxml2.mar, kdom2.mar
and xmlpull.mar. These are found in the modules directory of your JChassis SDK. A shortcut is to
use Ant to pick up all MAR files in the SDK. This is OK until you want to deploy your application,
when you will want to include as few MAR files as possible.

6. You should probably use the jcdep tool to check that your MAR files' dependencies are all satis-
fied. See "The SDK Tools" section.

7. If you use any other services, such as logging or command line parsing, you'll need MAR files for
those too. Consult the JChassis Module Guide for details.

8. Construct a services.properties file. Just use the same one as the "Hello World" example, namely:

loader.org.jchassis.basic.loader.kdom2.XmlServiceConfigurationLoader=

service.org.xmlpull.v1.XmlPullParser=\
org.kxml2.io.KXmlParser

instance.1.org.jchassis.resloc.ResourceLocator=\
org.jchassis.resloc.impl.ResourceLocator

9. Construct a services.xml file with the configuration that you desire to work with your code, as we
have discussed in this section. it's easiest to leave the public and system IDs out of the DOCTYPE
element, unless you are going to include the jcservices.dtd in your application.

10. Run your application. Enjoy!

The "Item List" example
A more complex example of a JChassis basic framework application is the "Item List" example in the
examples/item_list subdirectory of your JChassis SDK. This simple application persistently stores a list
of strings and allows the list to be displayed and manipulated in a user interface. This application can
thus be used as a rudimentary TODO list, shopping list, etc.

The "Item List" application uses an JChassis interface called the JChassis "UI" interface. This interface
has two different implementations for generating simple GUIs in AWT, or on ANSI text consoles (such
as those used in GNU/Linux). This means that you can write your application to use the JChassis UI in-
terface and then run it with one of the two implementations, without having to change a single line of
code (you get two UIs for the price of one!). The example is set up to use AWT. You can change this by

JChassis User Guide

12

editing the example's services.xml file to change the implementation of the org.jchassis.ui.Display in-
terface.

When selecting the ANSI terminal UI, you should also set the Log service to a null log (see the com-
ment in the services.xml) file) and use the supplied run_rawio to run the example. This script takes
care of setting up the console to accept raw input and to not automatically echo characters.

More complex applications
You may wish to write a application that has different parts running in different threads. JChassis
provides a convenient mechanism to do this by using instances of Engine (see the jc_coreapp module
in the JChassis Module Guide) in your configuration. Unlike Application, there can be as many in-
stances of Engine as you like in your configuration. Each Engine instance will be "started" when the ap-
plication initialised, and will get the service context you embedded it in your services.xml file.

Creating JChassis Components
In this section, we describe how to create your own JChassis components. Here are a few good reasons
why you would want to do this:

• you want your application to have a better structure: the use of loosely coupled components will lead
to a more flexible and maintainable program;

• you want to reuse your components in different applications, so you want them to be easily trans-
portable;

• you want your components to be reused in other parts of your organisation, or by other organisations
and developers: again, they need to be easily transportable and also highly usable and understand-
able by others.

Defining a service
Defining a service in JChassis is easy enough. Simply define an interface that describes the service, and
then define one or more implementations of that interface. It is even valid to just define an implementa-
tion class and make that class both the interface and the implementation (in the JChassis sense). We ad-
vise against this unless you are absolutely certain that you'll only ever need one implementation. Even
then, you are polluting your interface every time you add or change a method in your implementation
class. it's best that you have a separate interface class if possible, to future-proof your application.

The only restriction on a service implementation class is that it must have a constructor that takes no ar-
guments. JavaBeams have the same constraint. Hence, any JavaBean can be a JChassis service. This
constructor will be the one that is used to instantiate the service in the JChassis framework.

The next question you need to ask is "Does my component need to use any services?" If so, it needs to
be able to get hold of its service context. To do that, your implementation class should implement the
ServiceContextual interface in the org.jchassis.core package (see jc_core in the JChassis Module
Guide). One convenient way to do this is to extend BaseServiceContextual. This means that your im-
plementation can call its own getServiceContext method to get its service context. This service context
will be set by the framework when your implementation instance is inserted into the service context.
Once you have the ServiceContext instance, you can use that instance to obtain other services. If your
implementation was inserted into a service context in the basic framework, then your service context
will be a BasicServiceContext (see jc_basic in the JChassis Module Guide), and is equipped with more
features, such as getting services by name.

JChassis User Guide

13

If you don't want to package your service implementation in any way then you are finished. Otherwise
you could put it in a JAR file and read no further in this section. Alternatively, you could package it as a
JChassis module. We discuss JChassis modules and their advantages below.

JChassis Modules
Components in JChassis are called JChassis modules. These are distinct chunks of functionality with
well-defined interfaces. Traditionally, Java uses JAR files to package up components and APIs — there
is even a Sun standard to put version and other information (metadata) about the JAR contents into the
JAR file. We find this approach to be too limited: What if the archive contains several resources that we
wish to declare — their names and their versions? What about dependencies between a component and
other components' interfaces or other resources. The dependencies will often relate to the versions of
those other resources. How do we represent this version dependence?

Modules address the above questions by providing the information about a module in a convenient XML
format: the JChassis Module XML format. Here is an example (we'll skip the XML headers):

<module>
<name>jc_store_if</name>
<version>0.1</version>
<metadata><name>Author</name><value>Sam Stainsby</value></metadata>
<metadata><name>License</name><value>LGPL 2.1</value></metadata>
<metadata>

<name>Description</name>
<value>An interface for persistently storing and retrieving objects
</value>

</metadata>

<interface>
<name>org.jchassis.store.ObjectStore</name>
<version>0.1</version>

</interface>
</module>

This shows the module XML for the JChassis "Storage" service interface module. In JChassis, it is con-
venient to package service interfaces and default service implementations in separate modules to avoid
the interface carrying around any excess baggage. Without going into too much detail, the above XML
tells us that:

• this is a module, named "jc_store_if" with module version 0.1

• the author of the interface code is Sam Stainsby and the code's license is LGPL (Lesser GNU Public
License) version 2.1

• the description is, well, the stated description

• the module contains one JChassis service interface, org.jchassis.store.ObjectStore, of version 0.1

• no dependencies are listed

Here is the module that contains the default implementation of the JChassis Storage service (again skip-
ping the XML headers):

<module>
<name>jc_store_impl</name>
<version>0.1</version>
<metadata><name>Author</name><value>Sam Stainsby</value></metadata>

JChassis User Guide

14

<metadata><name>License</name><value>LGPL 2.1</value></metadata>
<metadata>

<name>Description</name>
<value>A simple storage implementation that uses Java serialisation.
</value>

</metadata>

<implementation>
<name>org.jchassis.store.impl.ObjectStore</name>
<version>0.1</version>
<implementation-of>

<name>org.jchassis.store.ObjectStore</name>
<version>0.1</version>

</implementation-of>
</implementation>

</module>

The items to note here are:

• there is one module called "jc_store_impl" of version 0.1

• the author and license are the same as for the service interface

• the module contains one JChassis service implementation called
org.jchassis.store.impl.ObjectStore with version 0.1

• this implementation is an implementation of the org.jchassis.store.ObjectStore version 0.1 service
interface: note that more than one interface can be declared in this way

So far, we have not seen any examples of dependencies. Or have we? In fact, in the last example, there
is an implicit dependency on the org.jchassis.store.ObjectStore version 0.1 interface (in fact any stor-
age interface version greater than or equal to 0.1 will suffice since backward compatibility of interfaces
is the default — see later).

Dependencies can be listed explicitly too, as in this example (once again excluding the XML headers):

<module>
<name>jc_coreloader</name>
<version>0.1</version>
<metadata><name>Author</name><value>Sam Stainsby</value></metadata>
<metadata><name>License</name><value>LGPL 2.1</value></metadata>
<metadata>

<name>Description</name>
<value>The configuration loader for the JChassis core framework.

</value>
</metadata>

<requires>
<module>

<name>jc_core</name>
<version>0.1</version>

</module>
</requires>

</module>

This module is the one that is used by JChassis to load the services.properties file in the JChassis core
framework. There are no service interfaces or implementations declared here. Instead this module de-
clares that it requires the module "jc_core", that contains the essential code for service contexts in the

JChassis User Guide

15

core framework.

The Module XML format
The exact syntax of the JChassis Module XML format is provided in the DTD called jcmodule.dtd in
the doc/dtd/0.1 subdirectory of your JChassis SDK. However, in this section we provide a more gentle
overview.

The top-level element in a module XML file is the module element. This may contain nested module
elements if you wish to package more than one module in a MAR file — we've not found a use for this
yet though.

Generally, a module XML file declares a numbers of resources which include modules, services inter-
faces and implementations. Other resource types may be added in later versions. Every resource must
have a name and a version, and hence must contain a name and a version element. These come first in-
side the element that represents the resource: name first, and then version. A resource version is a se-
quence of non-negative integers, separated by "." characters. A resource name is any string.

Apart from modules, other resources are JChassis service interfaces, represented by interface elements,
and JChassis service implementations, represented by implementation elements.

In some cases, you may want to declare some kind of implementation class, that is not necessarily a
JChassis service implementation, in its own right. You can use an implementation element for this as
well. This can be handy for setting up dependency relationships, as we'll see later.

After the name and version in a resource, there can be one or more optional metadata elements. These
describe the resource. Unlike metadata values in service.xml files, only string metadata values are sup-
ported in these elements. That is, there is no "type" attribute in the value element.

The order of child elements within a module element is important. First comes the module's name, ver-
sion and metadata elements, then the interface elements and then the implementation elements.

Within an implementation element, there can be zero or more implementation-of elements. Each im-
plementation-of element declares a JChassis service interface that the implementation wishes to expose.
The implementation-of element must contain a name element followed by a version element, express-
ing the name and version of the interface exposed. For example,

<implementation>
<name>MyImpl</name>
<version>2.1</version>

<implementation-of>
<name>InterfaceA</name>
<version>1.0</version>

</implementation-of>

<implementation-of>
<name>InterfaceB</name>
<version>1.1</version>

</implementation-of>

</implementation>

declares that the service implementation MyImpl (version 2.1) implements two service interfaces: In-
terfaceA (version 1.0) and InterfaceB (version 1.1). Note that not every interface has to be exposed —
it's up to the module developer to decide what should be seen by the module's users.

You now have the basics that enable you to declare JChassis modules and service interfaces and imple-
mentations. But what about the dependency information that we promised? Each element representing a

JChassis User Guide

16

resource (module, interface or implementation) can optionally have a final requires element. This ele-
ment declares the names and versions of the resources that the enclosing resource requires to operate.
Compatible versions are normally specified as a range of versions.

The most simple version construct in a requires element is something like:

<requires>
<interface>

<name>MyInterface</name>
<version>3.0</version>

</module>
</requires>

which means that MyInterface version 3.0 or above are required.

A version element always encloses a single version number. How that version number is interpreted is
controlled by an optional attribute on the version element, called range. Here is a summary of the effect
of the range attributes:

Table 1. The compatible versions v implied by the range attribute on a version
range <version range="...">V</version> (V must be a version number, e.g. 5.0).

value of "range" compatible versions

ge v >= V

le v <= V

gt v > V

lt v < V

eq v == V

ne v != V

any any v is compatible

none no values of v are compatible

Instead of just stopping there with handy version ranges for your dependencies, JChassis also allows you
to construct complex dependency relationships such as "resource X requires either resource Y or
(resource Z together with resource W)". This is accomplished with the following elements that can occur
as children of a requires elements and can also be nested inside each other:

• all-of: every contained resource is required

• one-of: one, and only one, of the contained resources is required

• some-of: one or more of the contained resources is required

• none-of: none of the contained resources must be present

These elements can nest as we've said, and can also contain resources, such as module, interface and
implementation elements. For example "implementation X requires either interface Y or (interface Z
together with interface W)", this can be expressed as:

<requires>
<one-of>

JChassis User Guide

17

<interface><name>Y</name><version>1.0</version>
<all-of>

<interface><name>Z</name><version>1.0</version>
<interface><name>W</name><version>1.0</version>

</all-of>
</one-of>

</requires>

Note that a statement about the version of each required resource is mandatory. In this case we have
taken "version 1.0 or greater" to be the rule for each required resource.

You should now have an idea of how to set up a module XML file to declare the contents of your mod-
ule and what is depends on. Later we explain what do with those contents and the XML file to make a
component that can be easily shared between developers and installed into JChassis applications (see
"Module Archives").

Module naming conventions
The name space of modules is important because it's used when defining resource interdependencies as
we have seen. Here we define a few conventions that you should use when naming modules:

1. Use the "_" character to separate name components.

2. If your module contains a service interface (and little else), use the suffix "_if".

3. If your module contains a default service implementation (and little else), use the suffix "_impl".

4. Use a prefix that relates to you or your group, team or organisation. For example, if you are build-
ing components as an employee of ABC Inc., you could use the prefix "abc_". Please use one pre-
fix consistently throughout your whole organisation.

5. Please don't use the prefix "jc_". This is reserved for "official" JChassis components.

Metadata naming conventions
As you can see, any metadata you like can be attached to resources in a module. In general, we would
like some of these to have consistent meanings. So far, we are reserving the following resource metadata
names and their meanings:

Table 2. Reserved resource metadata names and meanings.

resource metadata name meaning

Author the person(s) or organisation that created the re-
source (from a copyright perspective)

License the license that the resource is distributed under
(we recommend an OSI approved license

[http://opensource.org/licenses/])

Description a short description of the module

Module Archives

JChassis User Guide

18

http://opensource.org/licenses/

In JChassis, module archive (MAR) files are simply Java archives (JARs) with some extra information
added. As such, they can be used just as JAR files are, such as placing them in the classpath of your ap-
plication. The standard jar tool in Sun's SDK can be used on them. Every JAR file contains a META-
INF directory that contains metadata about the JAR. The extra information in a MAR file is the module
XML described above, which is placed in the JAR's META-INF directory, in a file called jcmod-
ule.xml.

The module XML in a MAR file can be listed using the jcmar tool. Even better, you can check that the
dependencies between a group of MAR files are satisfied using the jcdep tool. These tools are described
in the section "The SDK Tools" below.

Also included in your SDK are source MAR files for each module. These MAR files are suffixed with
".src.mar" and are found in the src_modules subdirectory in your JChassis SDK. These MAR files con-
tain the source code for the modules, where applicable, and also the Apache Ant build files to build
them.

Creating your own service context
There is nothing stopping you from implementing you own service context, for example by implement-
ing the ServiceContext or BasicServiceContext interface, or easier, extending DefaultServiceContext
or DefaultBasicServiceContext (see the jc_core and jc_basic modules in the JChassis Module Guide).

If you want to configure your custom context from a file, you may wish to write a loader for that con-
text. You can extend from the loaders found in the jc_coreloader, jc_basicloader and
jc_basicloader_kdom2 modules (see the JChassis Module Guide for information about these loaders).

The SDK Tools
In this section, we describe how to use the tools that come with the JChassis SDK, jcmar and jcdep. By
the way, both of these tools are JChassis applications — interested readers can find their configuration
files in the separate directories under the conf directory in your JChassis SDK (note that the tools use a
different loader and uses a validating XML parser). Both tools are started by scripts withing the bin dir-
ectory of the SDK. You will need to define the JAVA_HOME environment variable (or edit it into the
script called common).

IMPORTANT: The SDK tools need the jcmodule.dtd to validate module configuation. This is currenlty
dowloaded by HTTP as required. Hence, the tools need to access the network to run. If you see a mes-
sage such ass "External entity not found: http://jchassis.sourceforge.net/dtd/module/0.1/jcmodule.dtd"
then the tools is failing because it cannot retrieve the DTD.

Sorry, but there are no Apache Ant tasks to wrap these tools (yet!).

The jcmar tool
The jcmar tool simply lists the jcmodule.xml file within a MAR file. This file is discussed in "Creating
JChassis Components".

For example,

> jcmar mymodule.mar

will list the jcmodule.xml file in the META-INF directory stored in the mymodule.mar MAR file.

If more than one MAR file is listed on the command line, the output is just the concatenation of the con-
tents of the jcmodule.xml files from each MAR file.

JChassis User Guide

19

The jcdep tool
The jcdep tools is used to test a group of MAR files to see if their modules' dependencies are all mutu-
ally satisfied. This is typically used to determine if the MAR files that you are using for your application
have any outstanding dependencies. This helps prevent accidental misconfigurations by inadvertently
leaving out MAR files.

The jcdep tool simply takes a list of MAR files as it arguments. It prints out to the console any unsatis-
fied requirements for these MAR files. If there are no unsatisfied requirements, it prints nothing. For ex-
ample,

> jcdep mymodule1.mar mymodule2.mar mymodule3.mar

will check the requirements in the jcmodule.xml files in each of the MAR files mymodule1.mar, my-
module2.mar and mymodule3.mar to find out what resources the modules provide and also what re-
sources they require. It will then attempt to reconcile those requirements with the total set of resources
provided by these MAR files. If any of those requirements are not satisfied, they will be printed to the
console. Otherwise, nothing will be printed to the console.

The core framework
So far in this document, we have almost exclusively talked about the JChassis basic framework. In this
section we discuss the JChassis core framework. The core framework is only used if your code size re-
quirements are very constrained, such as a few tens of kilobytes. The core framework does not require
XML, and instead uses the Java property file format for service configuration. This file is called ser-
vice.properties and must be found in the classpath of your application. The features available on a core
framework's service context are significantly reduced (compare ServiceContext in the module jc_core
with BasicServiceContext in the module jc_basic, in the JChassis Module Guide).

The format of the service.properties file is fully explained in the javadoc for the DefaultServiceCon-
figurationLoader class in the jc_coreloader module (see the JChassis Module Guide). The location
and name of the service.properties file can be changed by setting the system property
org.jchassis.core.config which is the resource name (as in a class's getResource method) for the prop-
erty file.

The examples section of your JChassis SDK contains some examples of the use of the core framework
in the core subdirectory. By looking in the file named depends.properties in the examples/hello_world
example application, you see that only the MARs jc_core.mar, jc_coreapp.mar and
jc_coreloader.mar are needed. This is only about 15KB of byte code. The print_numbers example
shows an alternative way of configuring services (see its service.properties file) without needing the
basic framework, although it is less flexible.

An important point to note is that the "root" context in a basic framework application is actually a core
service context (an instance of ServiceContext), which is why resources added directly under the ser-
vices element in a service.xml file have constraints on their features: factory, metadata and property
elements are not allowed and instance aliasing is not allowed. Normally such resources are placed in a
child context element instead. The core context in a basic framework application is initially loaded from
the service.properties file in the application's classpath. Other resources directly under the services ele-
ment in the services.xml file are added after this. That is why the services.properties file always con-
tains an XML parser and a "loader" entry — these two entities are used to load the services.xml file.

A. What about the JavaBean APIs?
JChassis is not a replacement for standard JavaBeans components. JavaBeans components can live quite
happily within a JChassis context, and we have seen that any JavaBean can be a JChassis service.

JChassis User Guide

20

JChassis does however provide an alternative to Sun's standard BeanContext API. The BeanContext API
provides service contexts as does JChassis, but it also requires services and components within those
contexts to implement a set of interfaces and to conform to a particular event model. We believe that
these requirements are too onerous for simple components.

For example, the BeanContext API spends a lot of time worrying about services being added and re-
moved during runtime. This requires contexts to keep track of how many entities are currently using the
service. Entities within a context must explicitly acquire and release services so that a context knows
when it can allow them to be removed. Services must send events when they are removed, and other en-
tities must listen for those events and react accordingly. JChassis does not explicitly support adding and
removing services during runtime, because in the vast majority of cases, that is not needed. That is not to
say that a special class of services will allow this in the future, but the functionality will be provided in a
flexible "plug-in" way rather than hard-coded so that all services and other entities must suffer the added
complexity.

JChassis' lack of onerous requirements on service implementations means that integrating your existing
application code into JChassis is much easier, compared to many components systems.

JChassis User Guide

21

